12 research outputs found

    All-Digital Phase-Locked Loop for Radio Frequency Synthesis

    Get PDF
    It has been a constant challenge in wireless system design to meet the growing demand for an ever higher data rate and more diversified functionality at minimal cost and power consumption. The key lies in exploiting the phenomenal success of CMOS technology scaling for high-level integration. This underlies the paradigm shift in the field of integrated circuit (IC) design to one that increasingly favours digital circuits as opposed to their analog counterparts. With radio transceiver design for wireless systems in particular, a noticeable trend is the introduction of digital-intensive solutions for traditional analog functions. A prominent example is the emergence of the all-digital phase-locked loop (ADPLL) architectures for frequency synthesis. By avoiding traditional analog blocks, the ADPLL brings the benefits of high-level integration and improved programmability. This thesis presents ADPLL frequency synthesizer design, highlighting practical design considerations and technical innovations. Three prototype designs using a 65-nm CMOS technology are presented. The first example address a low-power ADPLL design for 2.4-GHz ISM (Industrial, Scientific, Medical) band frequency synthesis. A high-speed topology is employed in the implementation for the variable phase accumulator to count full cycles of the radio frequency (RF) output. A simple technique based on a short delay line in the reference signal path allows the time-to-digital converter (TDC) core to operate at a low duty cycle with approximately 95% reduction in its average power consumption. The ADPLL incorporates a two-point modulation scheme with an adaptive gain calibration to allow for direct frequency modulation. The second implementation is a wide-band ADPLL-based frequency synthesizer for cognitive radio sensor units. It employs a digitally controlled ring oscillator with an LC tank introduced to extend the tuning range and reduce power dissipation. An adaptive frequency calibration technique based on binary search is used for fast frequency settling. The third implementation is another wideband ADPLL frequency synthesizer. At the architectural level, separation of coarse-tune and fine-tune branches results in a word length reduction for both of them and allows the coarse tuning logic to be powered off or clock gated during normal operation, which led to a significant reduction in the area and power consumption for the digital logic and simplified the digital design. A dynamic binary search technique was proposed to achieve further improved frequency calibration speed compared with previous techniques. In addition, an original technique was employed for the frequency tuning of the wideband ring oscillator to allow for compact design and excellent linearity

    A digitally controlled 2.4GHz CMOS oscillator

    No full text
    In this thesis work, a digitally controlled oscillator (DCO) is designed and implemented in a 65nm 6-metal CMOS technology with 1.2 supply voltage, along with a differential-to-single-ended converter and auxiliary digital on-chip circuitry for testing. The main purpose is to study the DCO principles and design implications. The DCO is targeted for sensor network applications that use the 2.4GHz ISM band. The function and performance of the implemented DCO is verified in simulations. This thesis work is part of the CROPS project, and it serves as a preparatory step for the implementation of an ADPLL-based transmitter

    Effect of Post-Deposition Annealing on the Structural Evolution and Optoelectronic Properties of In<sub>2</sub>O<sub>3</sub>:H Thin Films

    No full text
    An infrared transparent conductive material is a solution to realize the shielding function of infrared windows against electromagnetic waves, by combining the two characteristics of high transmission and conductivity in infrared wavelengths. Indium-hydroxide-doped (In2O3:H) thin films were prepared by atomic layer deposition method, which can achieve high IR transmission by reducing the carrier concentration on the basis of ensuring the electrical properties. On this basis, the effect of the post-deposition annealing process on the microstructure evolution and optoelectronic properties of In2O3:H thin films was investigated in this paper. It is demonstrated that the carrier mobility after annealing is up to 90 cm2/(V·s), and the transmittance at the 4 μm is about 70%, meanwhile, the carrier concentration after annealing in air atmosphere is reduced to 1019 cm−3, with a transmission rate of up to 83% at 4 μm. The simulations visualize the shielding performance of the annealed In2O3:H thin film against radar electromagnetic waves. It provides a guideline for fabricating lightweight, thin, and multi-functional shielding infrared transparent materials in the key fields of spacecraft and high precision electronics

    Bismuth Nanoparticles with “Light” Property Served as a Multifunctional Probe for X‑ray Computed Tomography and Fluorescence Imaging

    No full text
    The development of the advanced imaging probe holds the key to the achievement of target imaging and metastasis tracing. The bismuth based nanoprobe has been regarded as the most promising X-ray computed tomography probe due to its largest X-ray attenuation coefficient. Accordingly, the bismuth nanoparticles with controllable size distribution and light weight have been fabricated through a one pot synthesis strategy. The surface modification can be easily conducted with the polyethylene glycol to make the nanoparticles hydrosoluble and biocompatible. More importantly, the Bi nanoparticles can be excited by light to conduct excitation wavelength dependent emission in the visible (Vis) and near-infrared (NIR) region, which makes it possible to utilize it for fluorescence imaging. Under the detection of the multimode CT/fluorescence imaging, the long circulation time of the Bi nanoparticles and its specific accumulation at the liver and intestine can be visually displayed. The facile and large scale preparation method, unique luminescence property, and multimode imaging function endow the Bi nanoparticles with promising applications in clinical diagnosis
    corecore